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Abstract
We present some properties of the two-scale convergence in Sobolev spaces for a two-dimensional case.
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Tóm tắt
Trong bài báo này, chúng tôi trình bày một số tính chất của hội tụ two-scale trong các không gian Sobolev cho một trường
hợp hai chiều.

Từ khóa: Đồng nhất hóa two-scale; hội tụ two-scale yếu; hội tụ two-scale trong các không gian Sobolev; hai chiều

1. Introduction

Consider a variable x = (x1, x2) and a
bounded reference domain Ω in dimension two,
where Ω is defined as Ω1 ×Ω2 ∈ R×R . When
the conventional weak limit cannot be used in
the context of the two-scale homogenization the-
ory, the two-scale limit [1], which Nguetseng de-
veloped in 1989, may be used instead. Keeping
this in mind, we first give a brief overview of
the usual weak convergence and weak two-scale
convergence before presenting some properties
of two-scale convergence in Sobolev spaces [2,

3, 4, 5], for the case of two dimensions.

2. Preliminaries

The collection {1,2} contains Latin indices.
Functions are represented by italic capitals (e.g.,
f ), vector fields in R2 and 2×2 matrix fields over
Ω are symbolized by bolds letters (e.g., v and T ).
Italic capital letters (e.g., L2(Ω)), boldface Ro-
man capital letters (e.g., L), and special Roman
capital letters (e.g., L) are used to designate the
space of functions, vector fields, and 2×2 matrix
fields defined over Ω=R2 , respectively.

∗Corresponding Author: Tina Mai; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet-
nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
Email: maitina@duytan.edu.vn

Tina Mai / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 01(56) (2023) 54-60 54 

 
 

     01(56) (2023) 54-60 



We employ the following list of notations
throughout the study [2]:

• Y := [0,1]2 denotes the reference periodic
cell.

• C 0(Ω) stands for the space of functions that
vanish at infinity.

• C∞
per(Y ) represents the Y -periodic C∞

vector-valued functions in R2. Herein, Y -
periodic implies 1-periodic in each vari-
able y i , i = 1,2.

• H 1
per(Y ), being the closure for the H 1-

norm of C∞
per(Y ), describes the space of

vector-valued functions v ∈ L2(Y ) such
that v (y) is Y -periodic in R2.

• The mean value of function v (y) is

〈v〉y = 1

|Y |
ˆ

Y
v (y)dy ,

where |Y | denotes the volume of Y .

•

Hper(Y ) := {v ∈ H 1
per(Y ) | 〈v〉y = 0} .

• The · represents the canonical inner prod-
ucts in R2 and R2×2 .

The form of Sobolev norm ∥ ·∥W 1,2
0 (Ω) is

∥v∥W 1,2
0 (Ω) = (∥v∥2

L2(Ω)
+∥∇v∥2

L2(Ω))
1
2 ;

with ∥v∥L2(Ω) := ∥|v |∥L2(Ω) , in which |v | is
the Euclidean norm of the 2-component vector-
valued function v , and ∥∇v∥L2(Ω) := ∥|∇v |∥L2(Ω) ,
where |∇v | is the Frobenius norm of the 2×2 ma-
trix ∇v . Recall that the Frobenius norm on L2(Ω)
is expressed by |X |2 := X ·X = tr(X TX ) .

We let ϵ be a natural small scale. Follow-
ing [6, 7, 8, 9], we investigate uϵ(x) ∈ W 1,2

0 (Ω)
depending only on x1 in the form uϵ(x) =
uϵ(x1), with Neumann type boundary conditions.
Thanks to [10], we do not distinguish between
a function on R and its extension to R2 as a
function of the first variable alone. Assume that

uϵ(x1) = u
(

x1

ϵ

)
is a periodic function in x1 hav-

ing period ϵ , equivalently, u
(

x1

ϵ

)
= u(y1) is a

periodic function in y1 possesing period 1. It im-
plies that for any integer k,

uϵ(x1) = uϵ(x1 +ϵ) = uϵ(x1 +kϵ) ,

that is,

u
(

x1

ϵ

)
= u

(
x1

ϵ
+1

)
= u

(
x1

ϵ
+k1

)
= u(y1 +k) .

To show the key concept, we focus on the
following case from strain-limiting elasticity [11,
12, 13]:

−div(κ(x1, |Duϵ|)Duϵ) = f in Ω ,uϵ = 0 on ∂Ω ,
(1)

where Duϵ stands for the classical linearized
strain tensor

Duϵ = 1

2
(∇uϵ+∇uT

ϵ ) .

An equivalent form of (1) is

−div(a(x1,Duϵ)) = f in Ω ,uϵ = 0 on ∂Ω , (2)

where u ∈ H 1
0(Ω),

a(x1,Duϵ) =κ(x1, |Duϵ|)Duϵ = Duϵ

1−βϵ(x1)|Duϵ|
is a high-contrast coefficient a(x1, ·) and as-
sumed to be grately heterogeneous with regard to
x = (x1, x2) , and f ∈ H 1∗(Ω) ⊂ L2(Ω) ⊊ H−1(Ω)
is an external force.

Let

Z :=
{
ζ ∈ L2(Ω) | 0 ≤ |ζ| < 1

βϵ(x1)
< 1

}
. (3)

3. Weak convergence

We review the basic notions of the theory of
two-scale convergence [4, 5]. Two-scale conver-
gence here can be thought as a generalized ver-
sion of the traditional weak convergence in the
Hilbert space L2(Ω) , which is described below
[4].
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Consider a sequence of functions uϵ ∈ L2(Ω).
By definition, (uϵ) is bounded in L2(Ω) if

limsup
ϵ→0

ˆ
Ω

|uϵ|2 dx ≤ c <∞ ,

with some positive constant c .
One states that a sequence (uϵ(x)) ∈ L2(Ω)

is weakly convergent to u(x) ∈ L2(Ω) as ϵ→ 0,
abbreviated by uϵ * u, if for any test function
φ ∈ L2(Ω) ,

lim
ϵ→0

ˆ
Ω

uϵ(x) ·φdx =
ˆ
Ω

u ·φdx . (4)

Furthermore, a sequence (uϵ) in L2(Ω) is de-
termined to be strongly convergent to u ∈ L2(Ω)
when ϵ→ 0, represented by uϵ→ u if

lim
ϵ→0

ˆ
Ω

uϵ ·v ϵdx =
ˆ
Ω

u ·v dx , (5)

for any sequence (v ϵ) ∈ L2(Ω) that is weakly con-
vergent to v ∈ L2(Ω) .

Over this paper, we let Y = [0,1]2 be the cell
of periodicity. (In our case, a periodic cell pos-
sesses the form Y = [0,1] × [0,1] .) The mean
value of a 1-periodic function ψ(y1) is written
as 〈ψ〉 :

〈ψ〉 ≡
ˆ

Y 1
ψ(y1)dy1 ,

where Y 1 = [0,1] , and y1 = ϵ−1x1 .
Also, the notation L2(Y ) holds here not only

for functions over Y but also for the space of
functions in L2(Y ) extended by 1-periodicity to
entire R2 . In a similar way, C∞

per(Y ) represents
the space of infinitely differentiable 1-periodic
functions over all R2 .

4. Weak two-scale convergence

We recall the following definition of weak
two-scale convergence in L2(Ω) [2, 3, 4].

Definition 4.1. Provided a bounded sequence
(uϵ) in L2(Ω) . If there is some subsequence,
still represented by uϵ and a function u(x , y1) ∈
L2(Ω×Y 1) (where Y 1 = [0,1]) such that

lim
ϵ→0

ˆ
Ω

uϵ(x)

(
φ(x)h

(
x1

ϵ

))
dx

=
ˆ
Ω×Y 1

u(x , y1)(φ(x)h(y1))dx dy1
(6)

for any h ∈ C∞
per(Y 1) and any φ ∈ C∞

0 (Ω) , then
such a sequence uϵ is called weakly two-scale
converge to u(x , y1) . This convergence is sym-
bolized by uϵ(x)** u(x , y1) .

For vector (or matrix) uϵ, equation (6) leads
to

lim
ϵ→0

ˆ
Ω

uϵ(x) ·Φ
(

x ,
x1

ϵ

)
dx

=
ˆ
Ω×Y 1

u(x , y1) ·Φ(x , y1)dx dy1 ,

(7)

with any Φ ∈ L2(Ω;C per(Y 1)) , whose choice can
be found in [14] (p. 8).

Remark 4.2. For the class of test functions φ ∈
C∞

0 (Ω),h ∈C∞
per(Y 1) in (6)’s condition, it can be

extended (utilizing the density argument) to the
class of test functions φ ∈C∞

0 (Ω),h ∈ L2(Y 1) .

Therefore, the convergence uϵ** u means the
convergence

uϵ(x)b

(
x1

ϵ

)
** u(x , y1)b(y1) , ∀b ∈ L∞(Y 1) .

(8)

5. Two-scale convergence in Sobolev spaces

This section and its notation follow [4, 5]. Re-
call that a matrix (or vector) Z ∈ L1(Ω) is referred
to as solenoidal (writing div Z = divx Z = 0) if

ˆ
Ω

Z ·D v d x = 0 ∀v ∈C∞
0 (Ω) .

Also, a 1-periodic matrix Z = Z (y1) ∈ L1(Y 1) is
named solenoidal (writing divy Z = 0) if
ˆ

Y 1
Z ·D v d y1 = 0 ∀v = v (y1) ∈C∞

per(Y 1) .

Let us discuss a few significant functional
spaces.

The space H 1
per(Y 1) is the closure of C∞

per(Y 1)

in L2(Y 1) with regard to the norm

∥v∥2
1,Y 1 =

ˆ
Y 1

(|v |2 +|D v |2)d y1 .

Tina Mai / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 01(56) (2023) 54-60 56 



The Poincaré inequality holds for the elements of
this space, ∀v ∈ H 1

per(Y 1) and
´

Y 1 v d y1 = 0 :

ˆ
Y 1

|v |2 d y1 ≤ c

ˆ
Y 1

|D v |2 d y1 . (9)

Thus, on the subspace of H 1
per(Y 1) contain-

ing vector functions with zero mean value, the
above norm has the equivalent form(ˆ

Y 1
|D v |2 d y1

)1/2

,

and this subspace is comparable to the space of
potential matrices (such as classical linearized
strains in elasticity):

V2
pot(Y 1) = {D v : v ∈ H 1

per(Y 1)} . (10)

More precisely, D v ∈Z as in (3), and we still use
V2

pot(Y 1) to include this given hypothesis in our
paper.

Without confusion of notation, we can define
the periodic Sobolev space H 1

per(Y 1) as the clo-
sure of (u,Du) , where u ∈C∞

per(Y 1), in L2(Y 1)×
L2(Y 1). The elements of H 1

per(Y 1) are thus pairs
ū = (u, z), where the second component z is said
to be the classical linearized strain tensor (the
symmetric part of the gradient of the first com-
ponent u) and is denoted by Du.

It is guaranteed that V2
pot(Y 1) is a closed sub-

space in L2(Y 1) by the Poincaré inequality, and
each of its elements can be represented by Du
with 〈u〉 = 0 in a unique way. By Theorem 4.7
in [15], every norm-closed subspace of L2(Y 1) is
the annihilator of its annihilator, so we have

V2
pot = (V2

sol)
⊥ and V2

sol = (V2
pot)

⊥ . (11)

Thus, the following orthogonal decomposition of
L2(Y 1) holds:

L2(Y 1) =V2
pot(Y 1)⊕V2

sol(Y 1) , (12)

where V2
sol(Y 1) is the collection of all solenoidal

(1-periodic) matrices in L2(Y 1).
Recall that we do not discriminate a function

on Y 1 from its extension to Y as a function of the
first variable only.

According to [16], the gradient’s non-
uniqueness is not really a trouble when deter-
mining an elliptic equation’s solution. The pair
(u,Du) represents the given equation (1)’s so-
lution, and its existence and uniqueness are in-
ferred from the general theory of monotone oper-
ators. There are two factors that make a solution
in this case unique: only one function in H 1

per and
one of its gradients can make the equation satis-
fied.

We write b = div a in order to demonstrate
that there are b ∈ L1

per(Y 1) and vector-valued
function a ∈ L1

per(Y 1) such thatˆ
Y 1

bφd y1 =−
ˆ

Y 1
a ·Dφd y1 ∀φ ∈C∞

per(Y 1) .

(13)
Equivalently,ˆ

R

bφd y1 =−
ˆ
R

a ·Dφd y1 , ∀φ ∈C∞
0 (R) .

(14)
Choosing φ = 1 in (14), we deduce that each
function b accepting the expression b = diva
posses a mean value of zero:ˆ

Y 1
b d y1 = 0.

The following theorem is based on [5], as
does its proof.

Theorem 5.1. With a ∈ L2(Y 1) , the collection
of functions b ∈ L2(Y 1) , denoted by b = div a ,
is dense in the subspace of functions in L2(Y 1)
having mean value 0.

Proof. Let B represent the collection of func-
tions b ∈ L2(Y 1) that is denoted by b = diva, a ∈
L2(Y 1) . The annihilator B⊥ is defined as the
collection of functions k ∈ L2(Y 1) such that´

Y 1 k d y1 = 0 and
´

Y 1 kb d y1 = 0 for any b ∈ B .
Recall that B⊥ = {b∗ ∈ (L2(Y 1))∗ =

L2(Y 1)|〈b∗,b〉 = 0 ∀b ∈ B}. If we can demon-
strate that B⊥ = {0} , then it follows that B is dense
in L2(Y 1) by invoking Theorem 4.7 in [15] (say-
ing (B⊥)⊥ is the norm-closure of B in L2(Y 1)).

Fixing k ∈ B⊥ , we investigate the periodic
problem: Find (u,Du) ∈ H 1

per(Y 1) such thatˆ
Y 1

(Du ·Dφ+uφ)d y1 =
ˆ

Y 1
kφd y1 , (15)
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for any φ ∈ C∞
per(Y 1) (being test function, it can

be chosen to be (φ,Dφ) ∈ H 1
per(Y 1)). It is well

known that this issue can be solved. The obvious
result is that k −u ∈ B , and since k ∈ B⊥ , we get
0 = ´Y 1 k(k−u)d y1 = ´Y 1 (|k|2−uk)d y1 . Apply-
ing the Hölder inequality, we obtain
ˆ

Y 1
|k|2 d y1 =

ˆ
Y 1

uk d y1

≤
(ˆ

Y 1
|u|2d y1

)1/2 (ˆ
Y 1

|k|2d y1
)1/2

,

that is,
ˆ

Y 1
|k|2 d y1 ≤

ˆ
Y 1

|u|2 d y1 . (16)

By letting φ= u in (15), we have
ˆ

Y 1
(|Du|2 +|u|2)d y1

=
ˆ

Y 1
ku d y1

≤
(ˆ

Y 1
|k|2 d y1

)1/2 (ˆ
Y 1

|u|2 d y1
)1/2

.

Therefore,
ˆ

Y 1
|u|2 d y1 ≤

ˆ
Y 1

|k|2 d y1

and
ˆ

Y 1
(|Du|2 +|u|2)d y1 ≤

ˆ
Y 1

|k|2 d y1 .

This along with (16) yields
ˆ

Y 1
|u|2 d y1 =

ˆ
Y 1

|k|2 d y1 ,

ˆ
Y 1

|Du|2 d y1 = 0.

It holds by the later result that u is constant for
a.e. y1 ∈ Y 1. This information and equation (15)
imply that k is constant for a.e. y1 ∈ Y 1 . Since´

Y 1 k d y1 = 0, it follows that k = 0. The proof is
thus finished.

The following theorem and its proof are de-
rived from [5].

Theorem 5.2. Let (uϵ) be a sequence in C∞
0 (Ω)

such that uϵ(x) ** u(x , y1) and Duϵ(x) **

z(x , y1) . The weak two-scale limit u , which be-
longs to W 1,2

0 (Ω) , is then independent of y1 ,

that is, u(x , y1) = u(x) ∈ W 1,2
0 (Ω). Further-

more, z(x , y1) = Du(x) + v (x , y1), having v ∈
L2(Ω,V2

pot ).

Proof. Note that our case involves second order
tensors. We take h ∈ L2

per(Y 1) and b ∈ L2
per(Y 1)

such that b = divh . The identity (14) means that
∀ψ ∈C∞

0 (Ω) ,

ϵ

ˆ
Ω

Dψ(x)·h(ϵ−1x1)d x =−
ˆ
Ω

ψ(x)b(ϵ−1x1)d x .

(17)
Letting ϕ ∈C∞

0 (Ω) , we now use partial differen-
tiation:
ˆ
Ω

D(ϕ(x)uϵ(x)) ·h(ϵ−1x1)d x

=
ˆ
Ω

(uϵDϕ(x)+ϕ(x)Duϵ) ·h(ϵ−1x1)d x .
(18)

This along with (17) implies that

−
ˆ
Ω

(ϕ(x)uϵ(x))b(ϵ−1x1)d x

= ϵ
ˆ
Ω

uϵ(Dϕ(x) ·h(ϵ−1x1))d x

+ϵ
ˆ
Ω

Duϵ · (ϕ(x)h(ϵ−1x1))d x .

The right hand side goes to zero when ϵ→ 0 be-
cause (uϵ) and (Duϵ) two-scale converge weakly
(using assumption). As a result, by proceeding to
the limit component-wise under the assumption
that uϵ(x)**u(x , y1) , we get

ˆ
Ω×Y 1

u(x , y1)(ϕ(x)b(y1))d x d y1 = 0.

For h ∈ L2(Y 1), it follows from Theorem 5.1
that the collection of functions b ∈ L2(Y 1) rep-
resented by b = divh (thus

´
Y 1 b(y1)d y1 = 0) is

dense in the subspace of functions in L2(Y 1) hav-
ing mean value 0. Thus, u is independent of y1 ,
that is, u(x , y1) = u(x).

Tina Mai / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 01(56) (2023) 54-60 58 



Afterwards, we show that u ∈ W 1,2
0 (Ω) and

that z(x , y1) = Du(x) + v (x , y1) , in which v ∈
L2(Ω,V2

pot) . For h ∈V2
sol with

ˆ
Y 1

h d y1 =η , (19)

and φ ∈C∞(Ω̄), we obtain the identity

0 =
ˆ
Ω

D(φuϵ) ·h(ϵ−1x1)d x

=
ˆ
Ω

(φDuϵ+uϵ⊗Dφ) · (h(ϵ−1x1)d x

=
ˆ
Ω

Duϵ · (h(ϵ−1x1)φ(x))d x

+
ˆ
Ω

uϵ · (h(ϵ−1x1)Dφ(x))d x .

(20)

Proceeding to the limit in the weak two-scale
sense component-wise, we reach

0 =
ˆ
Ω×Y 1

u(x) · (h(y1)Dφ(x))d x d y1

+
ˆ
Ω×Y 1

z(x , y1) · (h(y1)φ(x))d x d y1 .
(21)

Using (19), we get ∀φ ∈C∞(Ω̄) ,ˆ
Ω

u(x) · (ηDφ(x))d x =−
ˆ
Ω

vh(x)φ(x)d x ,

(22)

where vh(x) = ´Y 1 z(x , y1) ·h(y1)d y1 . It follows
from (22) that there exists (hi j ) ∈V2

sol such thatˆ
Ω

u j (x)D iφ(x)d x =−
ˆ
Ω

vhi j (x)φ(x)d x ,

(23)
forall φ ∈ C∞(Ω̄) , i = 1,2. Thus, the distribu-
tional partial derivatives D i u j = vhi j of u are in
L2(Ω), that is, u ∈ W 1,2(Ω). Furthermore, equa-
tion (23) along with the formula of integration by
parts leads to u ∈W 1,2

0 (Ω) forΩ having Lipschitz
property. Now, the equality (21) can be expressed
as ˆ

Y 1

ˆ
Ω

z(x , y1) · (h(y1)φ(x))d x d y1

=−
ˆ

Y 1

ˆ
Ω

u(x) · (h(y1)Dφ(x))d x d y1

=
ˆ

Y 1

ˆ
Ω

φ(x)Du(x) ·h(y1)d x d y1 .

(The right hand side was derived via integrating
by parts component-wise.) Hence,
ˆ

Y 1

ˆ
Ω

[z(x , y1)−Du(x)]·(φ(x)h(y1))d x d y1 = 0.

Since L2(Ω,V2
sol) is identified as closure in

L2(Ω × Y 1) of the linear span of matrices
g (x)h(y1), where g ∈ C∞

0 (Ω) and h ∈ V2
sol, it

holds that
ˆ

Y 1

ˆ
Ω

[z(x , y1)−Du(x)] ·w (x , y1)d x d y1 = 0,

for all w ∈ L2(Ω,V2
sol) . From (11), it is clear

that [z(x , y1)−Du(x)] is in L2(Ω,V2
pot), alterna-

tively, z(x , y1) = Du(x) + v (x , y1) , having v ∈
L2(Ω,V2

pot).
Sequences (uϵ) in C∞

0 (Ω) have been our fo-
cus thus far. Nevertheless, everything is true also
for sequences (uϵ) in the variable Sobolev space
W 1,2

0 (Ω), where W 1,2
0 (Ω) is determined as the

closure of the set of pairs (u,Du), where u ∈
C∞

0 (Ω), in L2(Y )×L2(Y ).

Note that this theorem is in two-dimensional
elasticity, as a special application. More general
n-dimensional results can be found in [5].
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