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Abstract
In this paper, we systematically define, present and prove the main properties of nodal basis functions utilized in p-adaptive
finite element methods.
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Tóm tắt
Trong bài báo này, chúng tôi định nghĩa, giới thiệu và chứng minh một cách có hệ thống các tính chất chính của hàm nút
cơ sở dùng trong phương pháp phần tử hữu hạn thích nghi loại p.

Từ khóa: Điểm nút; Hàm nút cơ sở; Phần tử hữu hạn loại p

1. Introduction

In adaptive finite element methods, the p-
approach uses elements of varying degrees to
represent the approximate solution [1, 2, 3].
Nodal basis functions are commonly utilized in
this approach [4, 5, 6]. The knowledge about
this type of functions is usually considered basic.
However, there is currently no literature covering
it in detail. This paper attempts to fill the void
by sytematically defining, presenting and prov-
ing the main properties of nodal basis functions.

2. Nodal points

Let Ω in R
2 be the bounded domain of the

partial differential equation we are working with.
For simplicity of exposition, we assume that Ω is
a polygon. Let T be a triangulation of Ω, t be
an element (triangle) in T . To define the nodal
basis functions associated with t , we begin with
the definition of nodal points.

Definition 2.1. Nodal points of an element (tri-
angle) t of degree p are:

(i) three vertex nodal points at the vertices.
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(ii) p − 1 edge nodal points equally spaced in
the interior of each edge.

(iii) interior nodal points placed at the intersec-
tions of lines that are parallel to edges and
connecting edge nodal points.

Nodal points of an element of degree p are
sometimes referred to as nodal points of degree
p. Note that linear elements (p = 1) have only
vertex nodal points and quadratic elements (p =

2) have only vertex and edge nodal points. Fig-
ure 1 shows examples of nodal points for element
of degree for p = 1, . . . ,3. Definition 2.1 above is
a descriptive one. Here, we adopt, for practical
purposes, the following result using barycentric
coordinates.

3. Nodal basis functions

Let Pp (t ) be the space of polynomials of de-
gree equal or less than p, restricted on element t .
The canonical basis of Pp (t ) is

{1, x, y, x y, . . . , xp−1 y, x y p−1
, xp

, y p
}.

This basis is simple but is not convenient to in-
corporate in finite element methods. In the next
few steps, we will prepare for the definition of
another basis of Pp (t ) which is usually used in
practice.

Lemma 3.1. Let P be a polynomial of degree
p ≥ 1 that vanishes on the straight line L de-
fined by equation L(x, y) = 0. Then we can write
P = LQ, where Q is a polynomial of degree p−1.

Chứng minh. Make an affine change of coordi-
nates to (x̂, y) such that L(x, y) = x̂ (if L(x, y) = y

then no change of coordinates is necessary). Let

P (x̂, y) =

p
∑

i=0

i
∑

j=0

ci j x̂ j y i− j
. (1)

In the new coordinate system, the equation of L

is x̂ = 0. Since P |L ≡ 0, plugging x̂ = 0 into equa-
tion (1) we have

∑p

i=0
ci 0 y i ≡ 0. This implies that

ci 0 = 0 for all i = 0, . . . p. Therefore,

P (x̂, y) =

p
∑

i=1

i
∑

j=1

ci j x̂ j y i− j

= x̂
p−1
∑

i=0

i
∑

j=0

x̂ j y i− j

= LQ.

Clearly, Q is a polynomial of degree p −1.

Lemma 3.2. If P ∈ Pp (t ) vanishes at all of the
nodal points of degree p of t , then P is the zero
polynomial.

Chứng minh. The proof is by induction on p.
Denote v1, v2, v3 and ℓ1, ℓ2, ℓ3 respectively be
the vertices and edges of t as shown in Figure
2. In addition, let L1, L2, L3 be the linear func-
tions that define the lines, on which lie the edges
ℓ1, ℓ2, ℓ3.

For p = 1, P is a linear polynomial that van-
ishes at two different points v2 and v3 of l1.
Therefore, P |ℓ1

≡ 0. By Lemma 3.1, P = cL1,
where c is a constant (polynomial of degree 0).
On the other hand, P equals zero at v1 and L1

is nonzero at v1. This implies that c = 0. Hence,
P ≡ 0.

For p = 2, P is a quadratic polynomial that
vanishes at three different nodal points on ℓ1.
Therefore, P |ℓ1

≡ 0. Again by Lemma 3.1, P =

L1Q, where Q is a linear function (polynomial of
degree 1). Since L1 is nonzero along ℓ2 except at
v3, Q needs to be zero at least at two points on ℓ2:
v1 and the midpoint of l2. Hence, Q = cL2, where
c is a constant. Consequently P = cL1L2. On the
other hand, P needs to be zero at the midpoint of
ℓ3 also. This implies that c = 0. Therefore, P ≡ 0.

For p = 3, using a similar argument, we have
P = cL1L2L3, where c is a constant. In order for
P to be zero at the interior nodal point of degree
3, c needs to be 0. Hence, P ≡ 0.

Assume that the lemma holds for polynomi-
als of degree up to p. For P ∈ Pp+1(t ), again by
a similar argument for p = 1, 2, 3, we know that
P = L1L2L3Q, where Q is a polynomial of de-
gree p −3 or less. Furthermore, Q vanishes at all
of the interior nodal points of t . These points can
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Hình 1. Nodal points of elements of degree p.
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Hình 2. Vertices and edges of elements of degree p = 1,2,3.

be seen as nodal points of degree p −3 of trian-
gle t ′ laid inside t . Examples for p = 4,5,6 are
illustrated in Figure 3. By induction hypothesis,
Q is the zero polynomial. Consequently, P is the
zero polynomial.

Now we define nodal basis functions for ele-
ment t .

Theorem 3.3. Consider a way of labeling the
nodal points of t , an element of degree p, from
n1 to nNp . Let φl be the polynomial of degree p

that equals 1 at the nodal point nl and equals

0 at all other nodal points of t . Then {φl }
Np

l=1
is

a basis of Pp (t ). This basis is called the nodal
basis of t .

Chứng minh. We first verify that φl are well de-
fined by showing their existence and uniqueness.
Assume (î /p, ĵ /p, k̂/p) is the barycentric coor-
dinates of nl̂ . Let P be the polynomial of degree
p defined as follows

P =

î−1
∏

i=0

(

c1 −
i

p

) ĵ−1
∏

j=0

(

c2 −
j

p

) k̂−1
∏

k=0

(

c3 −
k

p

)

.

Clearly, P is of degree p and is nonzero at
nl̂ . Now we consider a different nodal point nl

which is also of degree p and has barycentric co-
ordinates (i /p, j /p,k/p). Since i + j + k = p =

î + ĵ + k̂, either i < î or j < ĵ or k < k̂. Without
loss of generality, we can assume that i < î . Then
the formula of P contains the factor c1−i /p. This
implies that P equals zero at nl . Therefore, P is
of degree p and vanishes at all of the nodal points
of degree p except for nl̂ . Consequently, φl̂ ex-
ists and can be written as kl̂ P , where kl̂ is chosen
so that φl̂ equals 1 at nl̂ .

The uniqueness of φl comes from Lemma
3.2. Assume that φ′

l
is another polynomial of de-

gree p that equals 1 at nl and zero at all other
nodal points of degree p. Then P = φl −φ′

l
is a

polynomial of degree p (or less) and P vanishes
at all of the nodal points of degree p of t . By
Lemma 3.2, P ≡ 0. Hence, φl ≡φ′

l
.

It remains to show that {φl }
Np

l=1
is actually a

basis of Pp (t ). Assume that the zero polynomial
can be written as a linear combination of φl , i.e.
∑Np

l=1
αlφl ≡ 0. Evaluating both sides of this iden-

tity at nodal points of t , we have αl = 0 for all l .

This implies that {φl }
Np

l=1
is a linearly independent

set. On the other hand, the dimension of Pp (t ) is

Np . Therefore, {φl }
Np

l=1
is a basis of Pp (t ).

A nodal basis function can be referred to as
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Hình 3. The element t ′ formed by interior nodal points of elements of degree p = 4,5,6.

a vertex, edge, or interior nodal basis function
depending on the nodal point associated with it.
However, in practice, they are usually called hat
functions, bump functions and bubble functions
respectively due to their shapes.

Corollary 3.4. The following statements hold

(i) A vertex basis function equals zero on the
opposite edge.

(ii) An edge basis function equals zero on the
other two edges.

(iii) An interior basis function equals zero on all
edges.

Chứng minh. The proof of this corollary fol-
lows from the fact (shown in the proof of Theo-
rem 3.3) that the basis functions associated with
nodal points (î /p, ĵ /p, k̂/p) is uniquely deter-
mined by

φ= k
î−1
∏

i=0

(

c1 −
i

p

) ĵ−1
∏

j=0

(

c2 −
j

p

) k̂−1
∏

k=0

(

c3 −
k

p

)

,

where k is a constant.

Proposition 3.5. Let e be the shared edge of
two elements t and t ′ in the triangulation T . If
P ∈Pp (t ) and Q ∈Pp (t ) agree at all of the nodal
points on e (including the two vertices), then P

and Q agree along the whole e.

Chứng minh. The edge e can be parametrized
using one parameter θ. Let R = P −Q. Then R|e

is a polynomial of degree p, in variable θ. In ad-
dition, R|e vanishes at p +1 different values of θ
associated with p +1 nodal points on e. Hence,
R|e ≡ 0. In other words, P and Q agree along the
whole edge e.

So far we have been focusing on basis func-
tions defined on each element. Now we extend
the definition to the whole triangulation.

Let Pp (T ) be the space of C 0 (continuous)
piecewise polynomials of degree p, namely, the
space of continuous functions that are polynomi-
als of degree p on each element of triangulation
T . Each element of T is equipped with a set of
nodal points of degree p. Note that some of the
vertex and edge nodal points are shared by more
than one element. Similar to Theorem 3.3, we
will define basis functions associated with these
nodal points.

Theorem 3.6. Consider a way of labeling the
nodal points of the triangulation T from n1 to
nN . Let φi be the C 0 piecewise polynomial of de-
gree p defined on T that equals 1 at the nodal
point ni and equal 0 at all other nodal points of
T . Then {φi }N

i=1
is a basis of Pp (T ). This basis

is called the nodal basis of T .

Chứng minh. We first verify that φi are well
defined by showing their existence and unique-
ness. It is sufficient to show that such φi are
uniquely defined on each element and smooth
along shared edges of elements since they are C 0

piecewise polynomials.

Let t be an element in T . If ni does not be-
long to t , then by definition φi should be zero at
all of the nodal point of degree p of t . By Lemma
3.2, φi |t ≡ 0. If ni does belong to t , then φi

equals 1 at ni and equals zero at all other nodal
points of degree p of t. By Theorem 3.3, φi is the
basis function of Pp (t ) associated with the nodal
point ni .
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Hình 4. Supports of different kinds of basis functions.

The smoothness (continuity) of φi along the
shared edges of elements is obtained by using
Proposition 3.5 and noting that two neighboring
elements of the same degree share the same set
of nodal points along the common edge.

It remains to show that {φi }N
i=1

is actually a
basis of Pp (T ). First, an argument similar to the
one used in the proof of Theorem 3.3 shows that
{φi }N

i=1
are linearly independent. Now let P be

an arbitrary function in Pp (T ). Second, we will
show that P can be written as a linear combina-
tion of {φi }N

i=1
. Let P ′ =

∑N
i=1

ciφi , where ci is
the value of P at nodal point ni . Because {φi }N

i=1

are C 0 piecewise polynomial of degree p, so is
P ′. Furthermore, from definition of P ′, P − P ′

equals zero at all of the nodal points of T . By
Lemma 3.2, P −P ′ is zero on each element of
T . Therefore, P −P ′ is zero on the whole trian-
gulation T . In other words, P =

∑N
i=1

ciφi . This
completes our proof.

In the proof of Theorem 3.6, we observe that
φi |t ≡ 0 for almost all elements t ∈ T , except
the ones that touch the nodal point ni . In other
words, these basis functions have compact sup-
port. Figure 4 illustrates three different kinds of
support associated with different types of basis
functions.

In finite element method, solution is sought
as a linear combination of basis functions of fi-
nite element space. If the space of piecewise
polynomials of degree p, Pp (T ), equipped with
nodal basis functions defined in Theorem 3.6 is
chosen to be the finite element space, then the

coefficients ci in the expression of the finite ele-
ment solution f f .e =

∑N
i=1

ciφi is actually an ap-
proximation of the exact solution at the nodal
point ni . Because of this, ci are called degree of
freedom and the number of nodal points in T is
called number of degree of freedom. Sometimes,
the term “degree of freedom” is also used to refer
to nodal points in a triangulation.
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[3] W. Gui and I. Babuška. The h, p and h-p versions of
the finite element method in 1 dimension. II. The er-
ror analysis of the h- and h-p versions. Numer. Math.,
49(6):613–657, 1986.
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