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Abstract 

The calculations of 13C NMR chemical shifts for bakuchiol, a promising anti-aging agent, were performed using 11 

functionals (B3LYP, B3PW91, BPV86, CAM-B3LYP, HCTH, HSEH1PBE, mPW1PW91, PBEPBE, TPSSTPSS, and 

ωB97XD) and 10 common basis sets (3-21G, 6-31G(d,p), 6-31G(d,3p), 6-31G(3d,p) 6-31G++(d,p), DGDZVP, 

DGDZVP2, LANL2DZ, LANL2MB) to compare with experimental data. While functionals did not strongly impact the 

computed 13C chemical shifts, basis sets showed a significant influence on the results. For those functionals, B3LYP, 

B3PW91, CAM-B3LYP, HSEH1PBE, mPW1PW91, and ωB97XD were found to have strong correlations (r2 ≥ 0.9987) 

and low errors (CMAEs ≤ 1.96 ppm and CMAEs ≤ 2.49 ppm); among the tested basis sets 3-21G, DGDZVP provided 

the best results (r2 ≥ 0.9980, CMAEs ≤ 2.37 ppm and CMAEs ≤ 2.67 ppm). These results would allow meaningful 

predictions of 13C chemical shifts for bakuchiol.  
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Tóm tắt 

Phổ 13C của bakuchiol, tác nhân chống lão hóa, được tính toán bằng 11 hàm mật độ (B3LYP, B3PW91, BPV86, CAM-

B3LYP, HCTH, HSEH1PBE, mPW1PW91, PBEPBE, TPSSTPSS, và ωB97XD) và 10 mức lý thuyết (3-21G, 6-

31G(d,p), 6-31G(d,3p), 6-31G(3d,p) 6-31G++(d,p), DGDZVP, DGDZVP2, LANL2DZ, LANL2MB) nhằm so sánh với 

dữ liệu thực nghiệm. Trong khi các hàm mật độ thể hiện ảnh hưởng nhỏ lên độ dịch chuyển hóa học 13C, các kết quả 

tính toán bằng mức lý thuyết cho thấy sự phân hóa rộng hơn về độ chính xác. B3LYP, B3PW91, CAM-B3LYP, 

HSEH1PBE, mPW1PW91, và ωB97XD có độ tương quan cao (r2 ≥ 0.9987) và lỗi thấp (CMAEs ≤ 1.97 ppm và 

CMAEs ≤ 2.49 ppm); trong các mức lý thuyết, 3-21G, DGDZVP cho các kết quả với độ chính xác cao (r2 ≥ 0.9980, 

CMAEs ≤ 2.37 ppm and CMAEs ≤ 2.67 ppm).    

Từ khóa: Phổ 13C; NMR; hàm DFT; mức lý thuyết; bakuchiol. 
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1. Introduction 

 Bakuchiol (Figure 1), a prenylated phenolic 

monoterpene isolated from the fruit of Psoralea 

corylifolia, has recently shown a variety of 

pharmacological effects such as antioxidant, 

anti-bacterial, anti-inflammatory, anti-aging, 

and estrogen-like effects[1][2].  It also has 

protective effects in the heart, liver skin, and 

other organs. In addition, bakuchiol inhibits the 

proliferation of various cancer cells, including 

stomach, breast, and skin cancer cells and 

liverfibrosis via promoting myofibroblast 

apoptosis. It relieves the hepatotoxic of 

multiple toxicants by suppressing oxidative 

stress and inflammatory changes[3]. 

Understanding the structure of bakuchiol would 

provide insights into its pharmacological 

effects.   

Figure 1. (A) Bakuchiol and (B) its optimized structure at the IEFPCM(CHCl3)/B3LYP-631G(d,p) level of theory with 

numbered carbons (H atoms were omitted for clarity). 

The combination of experimental and 

computational NMR techniques has been a 

strong tool for providing the structural 

information of biologically active natural 

products, which can support the difficult 

assignments and the confirmation of their 

structures and provide valuable insights into the 

electronic environments of active NMR nucleus 

[4][5][6]. The gauge-including atomic orbitals 

(GIAO)/density functional theory (DFT) 

method are generally accepted as a standard 

method in computing shielding constants due to 

its reliability and applicability [7][8][9]. The 

accuracy of calculated chemical shifts typically 

depends on an appropriate combination of 

exchange-correlation functionals and basis sets 

[10]. Aimed to find suitable methods with high 

accuracy, this present study evaluated 11 DFT 

functionals and 11 common basis sets in the 

calculations of 13C chemical shifts for 

bakuchiol.  

2. Computational methods 

All calculations were performed using the 

Gaussian09 [11]. Geometry optimizations of 

bakuchiol were performed at the 

IEFPCM(CHCl3)/B3LYP/6-31G(d,p) level[12][13]. 

Subsequent frequency calculations ensured that 

a potential energy surface (PES) local 

minimum was attained during the energy 

minimization. Cartesian coordinates of the 

resulting structures are given in the Supporting 

Information. 

The following 11 functionals coupled with 

6-31G(d,p) [14] and 10 basis set coupled with 

B3LYP [15] were evaluated:  

- Funtionals: B3LYP (Becke’s 3-parameter 

hybrid functional[16] using B exchange[17] 

and LYP correlation),[15] B3PW91 (Perdew 

and Wang’s 1991 gradient-corrected correlation 

functional),[18][19] BPV86 (Perdew’s 1986 

functional),[16][20][21] CAM-B3LYP (Handy 
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and co-workers’ long-range corrected version 

of B3LYP using the Coulomb-attenuating 

method),[22] HCTH (Hamprecht-Cohen-Tozer-

Handy GGA functional),[23][24][25] 

HSEH1PBE (The exchange part of the screened 

Coulomb potential of Heyd, Scuseria, and 

Ernzerhof),[26][27] LSDA (Local spin-density 

approximation),[28] mPW1PW91 (mPW 

exchange and PW91 correlation),[29][30] 

PBEPBE (The functional of Perdew, Burke, 

and Ernzerhof),[31] TPSSTPSS (The exchange 

component of the Tao-Perdew-Staroverov-

Scuseria),[32][33] and ωB97XD (Head-Gordon 

and coworkers’ dispersion corrected long-range 

corrected hybrid functional)[34][35]. 

- Basis sets: Pople’s 3-21G, 6-31G(d,p), 6-

31G(3d,p), 6-31G(d,3p), 6-31++G(d,p),  and 6-

311G;[36][37][14] DGDZVP, DGDZVP2 ;[38] 

LANL2MB and LANL2DZ (Los Alamas 

ECP).[39][40] 

Unless specified otherwise, single-point 

NMR GIAO calculations were carried out in 

gas phase[41]. The GIAO NMR results were 

observed and extracted using GaussView06. 

Each optimized structure was used for 

computing the corresponding isotropic 

shielding constants ( . The chemical shifts 

( ) given in the Supporting Information were 

obtained using Equation 1. For both 13C NMR 

calculations, an average of values of 

equivalents atoms was assumed. For example, a 

single proton/carbon signal is observed for the 

two symmetrically aromatic CH groups of 

bakuchiol. To reduce the systematic error of the 

calculations, the linear regression analysis of 

the calculated chemical shifts versus the 

experimental ones (  (Equation 2) were 

performed and the scaled chemical shifts ( ) 

were computed according to Equation 3. As 

reference had a negligible impact on the linear 

regression analysis, the fix values of 197 ppm 

was chosen as TMS shielding constants for 

13C. Computed results were evaluated using 

mean absolute value (│Δδ│/ppm, Equation 4); 

corrected mean absolute error (CMAE/ppm, 

Equation 5); corrected root mean squared error 

(CRMSE/ppm, Equation 6); and the Pearson 

correlation coefficient (r2). The smaller values 

of CMAE and CRMSE indicate smaller errors 

and the larger value of r2 means a stronger 

correlation between theoretical and 

experimental data. Error calculations and linear 

correlations were performed using Microsoft 

Excel 2013.  

                                                   (1) 

                                                                      (2) 

                                             (3) 

                                                                        (4) 

  

                     (5) 

                        (6) 

3. Results and Discussion 

3.1. The evaluation of 11 DFT functionals  

11 Functionals were evaluated, and the 

results were showed in Table 1 and Figure 2. 

The functionals were sorted alphabetically by 

name. Table 1 shows statistical parameters 

using 11 different DFT functionals coupled 

with 6-31G(d,p) basis set and Figure 2 

illustrates absolute deviations. Overall, the 

correlation coefficients and error results 

indicate that the calculations provided a 

qualitatively accurate description of the 13C 

NMR chemical shifts. The CMAE and CRMSE 

values were in the ranges of 1.44 to 2.62 ppm 

and 1.72 to 3.53 ppm, respectively. The 

coefficients of determination (r2) were above 

0.9976 for all tested functionals. C3 and C16 

were consistently observed with the noticeable 

deviations ranged from 2.18 to 6.28 ppm and 

2.39 to 4.98 ppm, respectively (Figure 2). The 
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two best performers with strong correlations 

and low errors for 13C calculations were CAM-

B3LYP (CMAE = 1.44 ppm, CRMSE = 1.72 

ppm, and r2 = 0.9991), ωB97XD (CMAE = 

1.48ppm, CRMSE = 1.80 ppm, and r2 = 0.9990). 

Table 1. 13C NMR chemical shifts of bakuchiol calculated using 11 functionals 

    
δ(13C)  

Entry  

 

Functional 

 

r2 CMAE CRMSE 

1 

 

B3LYP 

 

0.9987 1.79 2.33 

2 

 

B3PW91 

 

0.9988 1.97 2.49 

3 

 

BPV86 

 

0.9978 2.36 3.17 

4 

 

CAM-B3LYP 0.9991 1.44 1.72 

5 

 

HCTH 

 

0.9981 2.23 2.96 

6 

 

HSEH1PBE 0.9989 1.91 2.34 

7 

 

LSDA 

 

0.9976 2.62 3.53 

8 

 

mPW1PW91 0.9989 1.91 2.36 

9 

 

PBEPBE 

 

0.9989 1.91 2.34 

10 

 

TPSSTPSS 0.9981 2.50 2.94 

11   ωB97XD   0.9990 1.48 1.80 

 

 

Figure 2. Absolute deviations of 13C chemical shift calculations using 11 functionals. 

3.2. The evaluation of 11 basis sets  

11 Basic sets were employed for computing 
13C chemical shifts of bakuchiol. In general, the 

calculated results were observed with low 

associated errors and strong linear correlations 

(r2 ≥ 0.9958). CMAE and CRMSE values were 

ranged from 1.79 to 4.97 ppm and 2.22 to 5.13 

ppm, respectively (Table 3). The largest 

deviations were found for C3, C11, and C16 

with CMAE and CRMSE values in the ranges 

of 1.05 to 6.25 ppm, 0.46 to 6.11 ppm, and 2.13 

to 4.47 ppm, respectively (Figure 1).  
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Table 2. The calculated 13C NMR chemical shifts of Bakuchiol in CHCl3 using 10 basic sets. 

All chemical shifts, CMAEs, and CRMSEs are in ppm.  

        δ(13C)    

Entry   Basis set   r2 CMAE CRMSE 

1   3-21G   0.9981 2.37 2.67 

2   6-31G(d,p) 0.9987 1.79 2.33 

3   6-31G(3d,p) 0.9971 2.62 3.21 

4   6-31G(d,3p) 0.9975 2.33 2.67 

5   6-31++G(d,p) 0.9958 3.35 3.43 

6   6-311G   0.9976 1.93 2.71 

7   DGDZVP   0.9985 2.19 2.22 

8   DGDZVP2 0.9962 4.97 5.13 

10   LANL2DZ   0.9970 3.13 3.28 

11   LANL2MB   0.9970 3.80 3.81 

 

 

 

Figure 3. Absolute deviations of 13C chemical shift calculations using 10 basis sets. 

4. Conclusion 

We have performed the evaluation of 11 

DFT functionals and 11 basis sets using GIAO 

method on the calculation of 13C chemical 

shifts for bakuchiol. Our results showed the two 

best performing functionals were CAM-B3LYP 

(CMAEs ≤ 1.44 ppm) and ωB97XD (CRMSEs 

≤ 1.80 ppm), and the best basis set was 6-

31G(d,p) (CMAEs ≤ 1.79 ppm). In these cases, 

excellent correlations between theoretical and 

experimental data (r2 > 0.9987) were observed. 

Given such high degree of accuracy achieved in 

calculating 13C chemical shifts of bakuchiol, 

this work can be useful for supporting the 

assignments of the experimental NMR spectra of 

bakuchiol and similar retinoid compounds. 

Further studies on the chemical shift calculations 

of these compounds are under-investigation.   
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