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Abstract

We describe a numerical homogenization technique for a two-dimensional nonlinear equation emerging from strain-

limiting elasticity.
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Tém tit

Chiing t6i trinh bay mot k§ thuat dong nhéit héa sb cho mot phuong trinh phi tuyén tinh hai chiéu phét sinh tir d6 dan hoi

gi6i han bién dang.

Tir khoa: dong nhit héa sb; hai chiéu; phuong trinh phi tuyén tinh; do dan hdi gi6i han bién dang.

1. Introduction

We theoretically describe a popular nu-
merical homogenization method for a two-
dimensional nonlinear equation arising from
strain-limiting elasticity. According to this strat-
egy, the number of degrees of freedom for each
coarse element is limited. Based on [1], our goal
is to demonstrate that this numerical homoge-
nization is a finite element approximation on a
coarse grid utilizing harmonic extension, where
each edge has only one degree of freedom.

2. Preliminaries

Latin indices belong to the set {1,2}. Italic
capitals (e.g. L?>(Q)), boldface Roman capitals
(e.g. V), and special Roman capitals (e.g. S) re-
spectively denote the spaces of functions, vector
fields in R2, and 2 x 2 matrix fields over Q.

The Sobolev norm || - || Wiz takes the form

2 2 1
12120y = (10132 0) + IVPIT )2

here, IVl 2q) = vl 2q), where |v| stands for

*Corresponding Author: Tina Mai; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet-
nam; Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam

Email: maitina@duytan.edu.vn



Tina Mai / Tap chi Khoa hoc va Cong nghé Dai hoc Duy Tan 5(54) (2022) 58-60 59

the Euclidean norm of the 2-component vector-
valued function v, and Vvl 2(q) := IIVVIlL2q),
in which |Vv| represents the Frobenius norm of
the 2 x 2 matrix Vv. Recall that the Frobenius
norm on L2(Q) is expressed by IXI2:=X-X =
tr(XTX).

2.1. Notations

To go through the key idea, we consider our
case from strain-limiting elasticity [2, 3, 4]:

—div(x(x',|Du|)Du) = finQ,u=0o0n0Q.
(D
Equivalently,
—div(a(x', Du)) = finQ,u=00n0Q, (2)
where u € H}(Q),

Du

1 — 1 =
a(x’,Du) =x(x",|Du|)Du = 1-B(xY|Dul

is a high-contrast coefficient, f € H}‘ Q) c
L2(Q) C H71(Q) is an external forcing term,
a(x',-) is assumed to be very heterogeneous with
respect to x = (x!, x?).

Let
1
Z:={Cel®>@|0=<|L|< <1}, 3
{z @10=1l< 5o (3)
and let
Y ={we H Q)| Dwe Z}, 4)
with the given Z in (3).

Remark 2.1. We shall employ the condition
u,ve H(l)(Q) or H'(Q) (depending on the con-
text) meaning that u,v € % for the remainder of
the paper, without misunderstanding.

Following is the corresponding weak formu-
lation: (£2) Find u in H(Q) such that

/ a(x',Du)-Dv = / fv, YveHyQ. (5)
Q Q
It has been proved in [5, 6] that (£2) with (5) is

well-posed. The energy norm of u € H'(Q) is re-
ferred to as

1/2
||u||1,2(g):( / x(x1,|Du|)|Du|2dx) . (6)
Q

Next, we describe the approximate solution
using finite elements [1]. Suppose I " is a fine
triangulation. With regard to J", let V" =
V" (Q) be the standard finite element space that
contains continuous piecewise linear functions.
The subset of V"(Q) consisting of functions that
vanish on 0Q is also denoted by V{}(Q) = V{)’.
Following is a definition of the discrete fine-
scale problem: (@h) Find u” € V'(Q) such that

/a(xl,Duh)~Dv:/f-v, Vee ViQ).
Q Q
(7

We also present a coarse discretization I~ H
where each coarse block is made up of a local-
ized fine mesh. Figure 1 in [1] provides an exam-
ple of a multiscale discretization with both fine
and coarse elements. Now, let us denote the ver-
tices of the coarse grid by {xi}f.\iyl and construct a
coarse neighborhood x; by

wi:u{KjE?TH; xiEI_(j}, (8)

in which N, is the number of coarse vertices,
and K; represents the coarse block in the do-
main. Within each coarse neighborhood w; (i =
1,---, N,), the set of coarse edges with a common
vertex x; is called the cross of x;.

3. Harmonic extension

We first introduce the notion of 2-harmonic
extension [1], or a-harmonic extension ([7]), or
for short, harmonic extension, or extension.

Definition 3.1. Provided K and u € H (K), let
it € H' (K) be defined so that it—u € H)(K) and
that u satisfies

—div(a(x', D)) =0 in K, 9)

in which a(x', Dit) = x(x',|Dat|)Dit. Then, it is
called the 2-harmonic extension or a-harmonic
extension of u and denoted by H,(u).

Notice that the weak form of (9) is
/ x(x',|D@t))Dit-Dvdx=0 YveHyQ).
Q
(10)
Taking v = @ in (10), we get

/K(xl,IDitI)IDitlzdx:O. (11)
Q
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Remark 3.2. The harmonic extension minimizes
the energy norm, that is,

/K(xl,lDﬁl)lDitlzdx (12)
K

= min

HI(K)/x(xl,mwanFdx,
veH,, K

(13)
with H,(K) ={ve H'(K)|v = u on 0K}.

Remark 3.3. In our paper, all harmonic ex-
tensions are attained coarse-element by coarse-
element K. Even though we might use the nota-
tion Hy directly on a bigger domain such as a
coarse neighborhood w; or the whole domain (2,
it implies that the extension is operated on each
coarse element K belonging to w; or Q).

4. Numerical Homogenization (NH)
Based on [1], we consider
—div(a(x!,Du) = fin Q,

having u € Hj(Q) (that is u = 0 on 0Q). For each
coarse-grid block K, our goal is to compute the
effective property. This is accomplished by solv-
ing the local problem

—div(a(x', DN)=0in K,

where the boundary condition is N¢ = {x on 0K..
By the Definition of harmonic extension 3.1, we
can express Ng = H>(Ex). Thus, a,(-) is defined
as follows:

1
a.(&) = —/ a(y',DNg)dy.
IKlJx
The coarse-grid equation is then of the form
—div(a«(Du,)) = fin Q,

where u., € H(l)(Q). We assume that u, =} ci¢p;.
(in which {¢p} is a linear basis) to get

FNE @) = /Q a.(D) ccpy)-Dp;dx

=) u*(chD(pk)-D¢j dx.

KeQ

At this stage, denoting Y cxD¢ = & =
constant, we obtain Ng = Hy(} ci(D¢y)x)
and

=) a*(z)-mpjdx
KeQ

_KZQ (lKl/a(x DNg)dx) D¢ ;dx
€

_/ 1 (/ a(x! DHZ(ch(Dcpk)x))dx) Do, dx
o K| J
_/ |Il('| (/ a(x! DHZ(ch([)k))dx) D([)]dx

:/Qf-(pjdx.
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