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Abstract
We describe a numerical homogenization technique for a two-dimensional nonlinear equation emerging from strain-
limiting elasticity.
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Tóm tắt
Chúng tôi trình bày một kỹ thuật đồng nhất hóa số cho một phương trình phi tuyến tính hai chiều phát sinh từ độ đàn hồi
giới hạn biến dạng.

Từ khóa: đồng nhất hóa số; hai chiều; phương trình phi tuyến tính; độ đàn hồi giới hạn biến dạng.

1. Introduction

We theoretically describe a popular nu-
merical homogenization method for a two-
dimensional nonlinear equation arising from
strain-limiting elasticity. According to this strat-
egy, the number of degrees of freedom for each
coarse element is limited. Based on [1], our goal
is to demonstrate that this numerical homoge-
nization is a finite element approximation on a
coarse grid utilizing harmonic extension, where
each edge has only one degree of freedom.

2. Preliminaries

Latin indices belong to the set {1,2}. Italic
capitals (e.g. L2(Ω)), boldface Roman capitals
(e.g. V ), and special Roman capitals (e.g. S) re-
spectively denote the spaces of functions, vector
fields in R2, and 2×2 matrix fields over Ω .

The Sobolev norm ∥ ·∥W 1,2
0 (Ω) takes the form

∥v∥W 1,2
0 (Ω) = (∥v∥2

L2(Ω)
+∥∇v∥2

L2(Ω))
1
2 ;

here, ∥v∥L2(Ω) := ∥|v |∥L2(Ω) , where |v | stands for
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the Euclidean norm of the 2-component vector-
valued function v , and ∥∇v∥L2(Ω) := ∥|∇v |∥L2(Ω) ,
in which |∇v | represents the Frobenius norm of
the 2 × 2 matrix ∇v . Recall that the Frobenius
norm on L2(Ω) is expressed by |X |2 := X · X =
tr(X TX ) .

2.1. Notations
To go through the key idea, we consider our

case from strain-limiting elasticity [2, 3, 4]:

−div(κ(x1, |Du|)Du) = f in Ω ,u = 0 on ∂Ω .
(1)

Equivalently,

−div(a(x1,Du)) = f in Ω ,u = 0 on ∂Ω , (2)

where u ∈ H 1
0(Ω),

a(x1,Du) =κ(x1, |Du|)Du = Du

1−β(x1)|Du|
is a high-contrast coefficient, f ∈ H 1∗(Ω) ⊂
L2(Ω) ⊊ H−1(Ω) is an external forcing term,
a(x1, ·) is assumed to be very heterogeneous with
respect to x = (x1, x2) .

Let

Z :=
{
ζ ∈ L2(Ω) | 0 ≤ |ζ| < 1

β(x1)
< 1

}
, (3)

and let

U = {w ∈ H 1(Ω) | D w ∈Z } , (4)

with the given Z in (3).

Remark 2.1. We shall employ the condition
u, v ∈ H 1

0(Ω) or H 1(Ω) (depending on the con-
text) meaning that u, v ∈U for the remainder of
the paper, without misunderstanding.

Following is the corresponding weak formu-
lation: (P ) Find u in H 1

0(Ω) such that
ˆ
Ω

a(x1,Du)·D v =
ˆ
Ω

f ·v , ∀v ∈ H 1
0(Ω) . (5)

It has been proved in [5, 6] that (P ) with (5) is
well-posed. The energy norm of u ∈ H 1(Ω) is re-
ferred to as

∥u∥1,2(Ω) =
(ˆ
Ω

κ(x1, |Du|)|Du|2 d x

)1/2

. (6)

Next, we describe the approximate solution
using finite elements [1]. Suppose T h is a fine
triangulation. With regard to T h , let V h =
V h(Ω) be the standard finite element space that
contains continuous piecewise linear functions.
The subset of V h(Ω) consisting of functions that
vanish on ∂Ω is also denoted by V h

0 (Ω) = V h
0 .

Following is a definition of the discrete fine-
scale problem: (P h) Find uh ∈V h(Ω) such thatˆ

Ω

a(x1,Duh) ·D v =
ˆ
Ω

f ·v , ∀v ∈V h
0 (Ω) .

(7)
We also present a coarse discretization T H ,

where each coarse block is made up of a local-
ized fine mesh. Figure 1 in [1] provides an exam-
ple of a multiscale discretization with both fine
and coarse elements. Now, let us denote the ver-
tices of the coarse grid by {x i }Nv

i=1 and construct a
coarse neighborhood x i by

wi =∪{K j ∈T H ; xi ∈ K̄ j } , (8)

in which Nv is the number of coarse vertices,
and K j represents the coarse block in the do-
main. Within each coarse neighborhood wi (i =
1, · · · , Nv ), the set of coarse edges with a common
vertex x i is called the cross of x i .

3. Harmonic extension

We first introduce the notion of 2-harmonic
extension [1], or a-harmonic extension ([7]), or
for short, harmonic extension, or extension.

Definition 3.1. Provided K and u ∈ H 1(K ), let
ũ ∈ H 1(K ) be defined so that ũ −u ∈ H 1

0(K ) and
that ũ satisfies

−div(a(x1,Dũ)) = 0 in K , (9)

in which a(x1,Dũ) =κ(x1, |Dũ|)Dũ . Then, ũ is
called the 2-harmonic extension or a-harmonic
extension of u and denoted by H 2(u) .

Notice that the weak form of (9) isˆ
Ω

κ(x1, |Dũ|)Dũ ·D v d x = 0 ∀v ∈ H 1
0(Ω) .

(10)
Taking v = ũ in (10), we getˆ

Ω

κ(x1, |Dũ|)|Dũ|2 d x = 0. (11)

Tina Mai / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 5(54) (2022) 58-60 

 

59 



Remark 3.2. The harmonic extension minimizes
the energy norm, that is,ˆ

K
κ(x1, |Dũ|)|Dũ|2 d x (12)

= min
v∈H 1

u (K )

ˆ
K
κ(x1, |D v |)|D v |2 d x ,

(13)

with H 1
u(K ) = {v ∈ H 1(K ) |v = u on ∂K }.

Remark 3.3. In our paper, all harmonic ex-
tensions are attained coarse-element by coarse-
element K . Even though we might use the nota-
tion H 2 directly on a bigger domain such as a
coarse neighborhood wi or the whole domainΩ ,
it implies that the extension is operated on each
coarse element K belonging to wi or Ω .

4. Numerical Homogenization (NH)

Based on [1], we consider

−div(a(x1,Du)) = f in Ω ,

having u ∈ H 1
0(Ω) (that is u = 0 on ∂Ω). For each

coarse-grid block K , our goal is to compute the
effective property. This is accomplished by solv-
ing the local problem

−div(a(x1,D Nξ)) = 0 in K ,

where the boundary condition is Nξ = ξx on ∂K .
By the Definition of harmonic extension 3.1, we
can express Nξ = H 2(ξx). Thus, a∗(·) is defined
as follows:

a∗(ξ) = 1

|K |
ˆ

K
a(y1,D Nξ)d y .

The coarse-grid equation is then of the form

−div(a∗(Du∗)) = f in Ω ,

where u∗ ∈ H 1
0(Ω). We assume that u∗ =∑

ckφk
(in which {φk } is a linear basis) to get

F N H (⃗c) =
ˆ
Ω

a∗(D
∑

ckφk ) ·Dφ j d x

= ∑
K∈Ω

ˆ
K

a∗(
∑

ck Dφk ) ·Dφ j d x .

At this stage, denoting
∑

ck Dφk = ξ =
const ant , we obtain Nξ = H 2(

∑
ck (Dφk )x)

and

F N H (⃗c)

= ∑
K∈Ω

ˆ
K

a∗(ξ) ·Dφ j d x

= ∑
K∈Ω

ˆ
K

(
1

|K |
ˆ

K
a(x1,D Nξ)d x

)
·Dφ j d x

=
ˆ
Ω

1

|K |
(ˆ

K
a(x1,D H 2(

∑
ck (Dφk )x))d x

)
·Dφ j d x

=
ˆ
Ω

1

|K |
(ˆ

K
a(x1,D H 2(

∑
ckφk ))d x

)
·Dφ j d x

=
ˆ
Ω

f ·φ j d x .
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