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Abstract
We present a multiscale model reduction framework utilizing generalized multiscale finite element method, for a two-
dimensional nonlinear equation emerging from strain-limiting elasticity.
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Tóm tắt
Chúng tôi trình bày một khuôn khổ giảm thiểu mô hình đa kích thước dùng phương pháp phần tử hữu hạn đa kích thước
tổng quát, cho một phương trình phi tuyến tính hai chiều phát sinh từ độ đàn hồi giới hạn biến dạng.

Từ khóa: phương pháp phần tử hữu hạn đa kích thước tổng quát; hai chiều; phương trình phi tuyến tính; độ đàn hồi giới
hạn biến dạng

1. Introduction

Based on [1], we theoretically present a mul-
tiscale model reduction framework using gener-
alized multiscale finite element method (GMs-
FEM) for a nonlinear equation occurring in
strain-limiting elasticity. In particular, we seek
the generalized multiscale finite element solu-
tion of such equation on the coarse grid’s crosses
utilizing nonlinear harmonic functions [1]. Note

that the ability to capture the impact of small and
separable scales makes studying nonlinear func-
tions crucial. By extending the acquired cross
values into the entire domain, the global solu-
tion may then be approximated. The Numeri-
cal Homogenization (NH) [1] is what inspired
this concept. Our goal is to demonstrate that the
suggested generalized multiscale finite element
method recovers NH.
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2. Preliminaries

Latin indices are in the set {1,2}. Italic cap-
itals (e.g. L2(Ω)), boldface Roman capitals (e.g.
V ), and special Roman capitals (e.g. S) stand for
the spaces of functions, vector fields in R2, and
2×2 matrix fields over Ω , respectively.

The Sobolev norm ∥ ·∥W 1,2
0 (Ω) is expressed by

∥v∥W 1,2
0 (Ω) = (∥v∥2

L2(Ω)
+∥∇v∥2

L2(Ω))
1
2 ;

in which, ∥v∥L2(Ω) := ∥|v |∥L2(Ω) , where |v | sym-
bolizes the Euclidean norm of the 2-component
vector-valued function v , and ∥∇v∥L2(Ω) :=
∥|∇v |∥L2(Ω) , where |∇v | designates the Frobe-
nius norm of the 2×2 matrix ∇v . Recall that the
Frobenius norm on L2(Ω) has the form |X |2 :=
X ·X = tr(X TX ) .

2.1. Notations

To explain the main concept, we consider
the following case from strain-limiting elasticity
[2, 3, 4]:

−div(κ(x1, |Du|)Du) = f in Ω ,u = 0 on ∂Ω .
(1)

Equivalently,

−div(a(x1,Du)) = f in Ω ,u = 0 on ∂Ω , (2)

in which u ∈ H 1
0(Ω),

a(x1,Du) =κ(x1, |Du|)Du = Du

1−β(x1)|Du|

is a high-contrast coefficient a(x1, ·) and as-
sumed to be very heterogeneous with respect to
x = (x1, x2) , and f ∈ H 1∗(Ω) ⊂ L2(Ω) ⊊ H−1(Ω)
is an external forcing term.

Let

Z :=
{
ζ ∈ L2(Ω) | 0 ≤ |ζ| < 1

β(x1)
< 1

}
, (3)

and let

U = {w ∈ H 1(Ω) | D w ∈Z } , (4)

with the provided Z in (3).

Remark 2.1. Without ambiguity, we will use the
hypothesis u, v ∈ H 1

0(Ω) or H 1(Ω) (depending
on the context) with the meaning that u, v ∈ U ,
for the remaining of this paper.

Here is the equivalent weak formulation: (P )
Find u in H 1

0(Ω) such that

ˆ
Ω

a(x1,Du)·D v =
ˆ
Ω

f ·v , ∀v ∈ H 1
0(Ω) . (5)

It has been demonstrated that (P ) with (5) is a
well-posed problem in [5, 6]. The energy norm
of u ∈ H 1(Ω) is denoted by

∥u∥1,2(Ω) =
(ˆ
Ω

κ(x1, |Du|)|Du|2 d x

)1/2

. (6)

The approximate solution is then described
using finite elements [1]. Let T h be a fine tri-
angulation. Also, let V h = V h(Ω) be the clas-
sical finite element space (for T h), which con-
tains continuous piecewise linear functions. The
expression V h

0 (Ω) = V h
0 designates the subset of

V h(Ω) possessing functions that become zero
on ∂Ω . Discrete fine-scale problem definition is
provided below: (P h) Find uh ∈V h(Ω) such that
ˆ
Ω

a(x1,Duh) ·D v =
ˆ
Ω

f ·v , ∀v ∈V h
0 (Ω) .

(7)
Moreover, a coarse discretization is intro-

duced under the name T H , in which every
coarse element is composed of a localized fine
grid. An illustration of a multiscale discretiza-
tion with both fine and coarse elements can be
found in [1]’s Figure 1. Now, let us use the nota-
tion {x i }Nv

i=1 to represent the coarse grid’s vertices
and create a coarse neighborhood x i by

wi =∪{K j ∈T H ; xi ∈ K̄ j } , (8)

where K j denotes a coarse block in the domain
Ω and Nv stands for the number of coarse ver-
tices. The collection of coarse edges having a
common vertex x i within each coarse neighbor-
hood wi (i = 1, · · · , Nv ) is referred to as the cross
of x i .
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3. Harmonic extension

We begin by defining the term 2-harmonic
extension [1], or a-harmonic extension [7], or
harmonic extension, often known as extension.

Definition 3.1. Given K and u ∈ H 1(K ), let ũ ∈
H 1(K ) be defined so that ũ −u ∈ H 1

0(K ) and ũ
makes the following hold

−div(a(x1,Dũ)) = 0 in K , (9)

in which a(x1,Dũ) =κ(x1, |Dũ|)Dũ . Then, ũ is
referred to as the 2-harmonic extension or a-
harmonic extension of u and represented by the
symbol H 2(u) .

Note that (9) has a weak form which is

ˆ
Ω

κ(x1, |Dũ|)Dũ ·D v d x = 0 ∀v ∈ H 1
0(Ω) .

(10)
Choosing v = ũ in (10), there holds

ˆ
Ω

κ(x1, |Dũ|)|Dũ|2 d x = 0. (11)

Remark 3.2. The harmonic extension minimizes
the energy norm, that is

ˆ
K
κ(x1, |Dũ|)|Dũ|2 d x (12)

= min
v∈H 1

u (K )

ˆ
K
κ(x1, |D v |)|D v |2 d x , (13)

with H 1
u(K ) = {v ∈ H 1(K ) |v = u on ∂K }.

Remark 3.3. All harmonic extensions are
achieved coarse-element by coarse-element K in
our paper. The extension is carried out on each
coarse element K belonging to wi or Ω , even
though we could use the notation H 2 directly on
a larger domain like a coarse neighborhood wi

or the entire domain Ω .

This idea of a nonlinear harmonic function
will be applied in the section below.

4. Generalized multiscale finite element
method

Based on [1], this approach’s name indicates
that we want to seek a numerical approximation
of the solution and use the degrees of freedom
alone on the crosses to demonstrate model reduc-
tion. We assume that the generalized multiscale
finite element solution needs to be found is of the
form

ums = H 2(
∑

i

Li∑
k=1

cwi
k χiφ

wi
k ) , (14)

where the collection of multiscale basis func-
tions established in each coarse neighborhood
wi is {φwi

k }Li
k=1 , and the set of partition of unity

functions is {χi }Nv
i=1 . Then, the following is gen-

eralized multiscale finite element formulation for
Equation (2): Find c⃗ = {cwi

k }i ,k such that

ˆ
Ω

a(x1,Dums) ·Dφwi
j d x =

ˆ
Ω

f ·φwi
j d x ∀ j ,

(15)
where a(x1,Du) = κ(x1, |Du|)Du was defined
in Subsection 2.1.

Remark 4.1. The numerical solution ums

in (15) for the GMsFEM is uniquely de-
fined. Indeed, suppose there exist two solu-
tions u1 = H 2(

∑
i
∑Li

k=1 cwi
k,1χiφ

wi
k ) and u2 =

H 2(
∑

i
∑Li

k=1 cwi
k,2χiφ

wi
k ) to (15). Consequently, it

holds that
ˆ
Ω

(a(x1,Du1)−a(x1,Du2)) ·D v d x = 0,

for all test functions. Given that 1 ≤ κ(x1, |Du|)
and that the extensions in each coarse block are
u1 and u2 , we obtain
ˆ
Ω

|Du1 −Du2|2

≤
ˆ
Ω

(κ(x1, |Du1|)Du1 −κ(x1, |Du2|)Du2) ·D(u1 −u2)

= 0,

which implies u1 = u2. Therefore, the solution of (15)
is uniquely defined.
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4.1. Partition of unity functions
We must first build a set of partition of unity

functions {χi }Nv
i=1 , similarly to the suggested ap-

proach in [1]. The sum of these functions is one
and they are supported in coarse neighborhoods.
In particular,

∑Nv
i=1χi = 1, and the support of χi is

wi . Additionally, at the vertex x i , χi has a value
of 1. Two widely used sets of partition of unity
functions are shown below.

• First of all, it is a bilinear partition of unity:
χi is defined as the standard bilinear basis
functions χ0

i on wi for each i ∈ {1, · · · , Nv }:

χi =χ0
i =


χ0

i (yi ) for yi ∈ wi ,

1 at node x i ,

0 on ∂wi .

• Second, a multiscale partition of unity
(with linear boundary conditions) is avail-
able for better numerical performance:
With any K ∈ wi , for some φwi

k ∈ H 1
0(K )

(to be specified later), χi is defined by

−div(a(x1,D(χiφ
wi
k ))) = 0 in K ∈ wi ,

χi =χ0
i on ∂K .

4.2. Generalized multiscale finite element basis
4.2.1. Snapshot space

Provided a coarse neighborhood wi , starting
with a snapshot space V wi

snap , the multiscale ba-
sis functions on wi are constructed. The set of
functions defined on wi makes up the snapshot
space V wi

snap and comprises all or the majority of
its essential ingredients of the fine-scale solution
over wi .

In order to extract the dominant modes,
which form the offline basis functions, a spec-
tral problem is then solved in the snapshot space
V wi

snap ; and offline space is the term used to de-
scribe the resulting reduced space. Listed below
are two popular options for V wi

snap .
The first option is to use all fine-grid func-

tions that are available in wi . Although this snap-
shot space provides an exact approximation of
the solution space, it can also be exceedingly big.
Therefore, utilizing harmonic extensions is the
second option as follows.

• The collection of all nodes belonging to
the fine mesh T h that are located on ∂wi

is denoted by the symbol M h(wi ) .

• We build a discrete delta function δh
j (xk )

defined on M h(wi ) for each fine-grid node
xk ∈ M h(wi ) by

δh
j (xk ) =δ j k =

{
(δ j j ,0) or (0,δ j j ) , k = j ,

0 = (0,0) , k , j .

• Then, under the notation ψ
wi
j , the j−th

snapshot basis function is specified as the
solution of

−div(κ(x1, |Dψwi
j |)Dψwi

j ) = 0 in wi ,

ψ
wi
j =δh

j on ∂wi .

(16)

As before, one can choose between ψwi
j =

(δh
j ,0) and ψ

wi
j = (0,δh

j ) in 2D. The di-
mensions of V wi

snap and the size of M h(wi )
are same.

By utilizing an auxiliary spectral decomposi-
tion with these snapshots, we build offline basis
functions as shown below.

4.2.2. Offline space
The design of an appropriate nonlinear spec-

tral problem, which will be solved in the snap-
shot space, serves as the foundation for the es-
tablishment of a generalized multiscale basis for
solving (1) or (2) in the manner of harmonic ex-
tension. We define the following nonlinear eigen-
value problem, which can be described using
the Rayleigh-Ritz method (RRM), in each coarse
neighborhood wi :

φ
wi
1 = c wi ,

λ
wi
1 = 0,

φ
wi
k = arg min

v∈V
wi
snap

G wi (v )

G wi
χ (v −P k−1(v ))

,

λ
wi
k = G wi (φwi

k )

G wi
χ (φwi

k −P k−1(φwi
k ))

, ∀k ≥ 2,

(17)
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 where c wi ∈V wi

snap in wi is a constant function,

G wi (v ) =
ˆ

wi

κ(x1, |D H 2(v )|) |D H 2(v )|2 d x ,

G wi
χ (v ) =

ˆ
wi

κ(x1, |D H 2(χi v )|) |D H 2(χi v )|2 d x ,

P k (u) = arg min
v∈V

wi
k−1

G wi (u −v ) ,

V wi
k−1 = span{φwi

1 , · · · ,φwi
k−1} .

This well-defined nonlinear eigenvalue problem
is a classical orthogonal subspace minimization
method (see, for instance, [8]).

After being multiplied by the corresponding
partition of the unity function χi , the eigenfunc-
tions {φwi

k }k in each coarse neighborhood wi will
contribute as offline basis (or we refer to them as
generalized multiscale basis or eigenbasis). We
choose the first Li eigenfunctions on each wi and
designate the offline space as

V c = span{χiφ
wi

k : k = 1, · · · ,Li ; i = 1, · · · , Nv } ⊆ H 1(Ω) .

Keeping in mind that our solution (14) has the
form ums = H 2(

∑
i
∑Li

k=1 cwi
k χiφ

wi
k ), which indi-

cates that ums is reached by harmonically ex-
tending

∑
i
∑Li

k=1 cwi
k χiφ

wi
k in each coarse ele-

ment K , and we thus only take into account the
values of

∑
i
∑Li

k=1 cwi
k χiφ

wi
k restricted to each

coarse edge. More precisely, in the harmonic ex-
tension process, if one coarse neighborhood wi

of an interior coarse node x i is considered (see
Figure 2 in [1], for example), then we choose
the restriction of

∑
i
∑Li

k=1 cwi
k χiφ

wi
k on the re-

lated 12 coarse edges. It is important to note
that the partition of unity functions χi become
zero at and beyond the wi ’s boundary. This is
why the restriction of

∑
i
∑Li

k=1 cwi
k χiφ

wi
k on the

cross (that is, the inside four coarse edges hav-
ing vertex x i ) is valid. These facts allow us to
restrict χiφ

wi
k (k = 1, · · · ,Li ) on the cross of wi

and present the restricted basis (called cross ba-
sis) by φ̂wi

k . Afterward, the following expression
holds

ums = H 2(
∑

i

Li∑
k=1

cwi
k φ̂

wi
k ) . (18)

Let us define

V̂
c = span{φ̂

wi
k : k = 1, · · · ,Li ; i = 1, · · · , Nv } .

(19)
This allows us to concentrate on the degrees of
freedom on the crosses when operating spectral
decomposition.

We note that for nonlinear problems, gener-
ally, it is impossible to fully understand the ef-
fects of small separable scales without the use
of nonlinear harmonic functions. In contrast, one
can create a linear basis function for every coarse
node that contains the small scales’ effects in lin-
ear problems.
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Endre Süli. On elastic solids with limiting small strain:
modelling and analysis. EMS Surveys in Mathematical
Sciences, 1(2):283–332, 2014.

[6] M. Bulíc̆ek, J. Málek, and E. Süli. Analy-
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