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Abstract

We study analysis (including convergence) of the multiscale finite element method (MsFEM) for a periodically nonlinear
elasticity problem in one-dimensional and strain-limiting settings.
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Tém tit

Chiing t6i nghién cdu gidi tich (bao gdm sy hoi ty) clia phuong phap phan ti hitu han da kich thudc (MsFEM) cho mdt
bai todn do dan hdi phi tuyen tuan hoan trong thiét 1ap mdt chiéu va gidi han bién dang.

Tir khéa: Gidi tich, sy hoi tu, phuong phap phan td hitu han da kich thudc, ddng nhit héa, tudn hoan, do dan hdi phi

tuyén, gisi han bién dang.

1. Introduction

As a model reduction approach for tackling
multiscale problems, the multiscale finite ele-
ment method (MsFEM) involves finding a nu-
merical approximation of a homogenized solu-
tion without solving auxiliary problems (for ex-
ample, periodic cell problems) that arise in ho-
mogenization. Toward such multiscale investiga-
tion of our considering nonlinear elasticity mod-
els, we focus on a periodically strain-limiting
problem. (The strain-limiting parameter in this
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paper is a function depending on the position
variable, which is different from the constant in
[1, 2].) In particular, we study the analysis (in-
cluding convergence) of the MsFEM for a pe-
riodically nonlinear elasticity problem in one-
dimensional and strain-limiting settings.

2. Formulation of the problem

2.1. Classical formulation

As in Figure 1, we consider in the x-
direction, the spatially periodic 1D composite
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Hinh 1. Layered composite structure (from [3]).

rod consisting of alternating layers of nonlinear
elastic media Q) and Q?). The microscopic size
corresponds to the length of a periodically re-
peated base cell is represented by I. The macro-
scopic size of the total sampling Q < R of the rod
is denoted by L. Without loss of generality, we
pick [ = € (the period of the structure) and choose
L =1 so that

Il ¢
€E=—=—
L 1

ke |
= (D

X
Here, — denotes the local position.
€

The rod is assumed to be at a static state
after the action of body forces (along the rod)
f:Q — R and traction forces G : 0Q7 — R. The
boundary of the set Q is denoted by 4Q, which
is Lipschitz continuous, having two parts 0Qr
and 0Q2p, where the displacement u: Q — R is
provided on 0Qp. We are focusing on the strain-
limiting model of the form (as in [1])

F=—2 )
1+ p(x)|o]
Equivalently,
E
= 3
7T 1 BWIE] ©

In Egs. (2) and (3), p(x) will be described in
the next paragraph, o denotes the Cauchy stress

o :Q — R; and E stands for the classical lin-
earized strain tensor

1 T
E::E(Vu+Vu ). @

In one-dimensional setting, it is
E:=u, 5

namely, the spatial derivative of u. Hence, by (3),

u/

T

The strain-limiting parameter function is rep-
resented by f(x), which depends on the position
variable x, and it is constant with respect to each
layer, with f¢(x) = ﬁ(e_lx). We obtain from (2)
that

(6)

lo| 1

|E| = < .
1+px)ol  pBx)

(7

This indicates that

) is the upper-bound on

|E| and taking sufficiently big [(x) brings the
limiting-strain small upper-bound, as expected.
However, too large f(x) is avoided. If f(x) — oo

then |E| < m — 0, a contradiction. Moreover,
X

B(x) is assumed to be smooth and have compact
range 0 < m < f(x) = M. Also, we assume that

if jl<x<(j+a)lforsome jeN,

P> otherwise.

()



Here, §; and f, are selected so that the strong el-
lipticity condition [1] is met. Realistically, the re-
quirement of strong point-wise ellipticity in each
layer is not vital. This happens because all the
crucial instability phenomena occur somewhat
below the stress levels corresponding to the loss
of ellipticity of the weakest layer (see [4, 5]).

2.2. Function spaces

LetV:= H& (Q2) is our considered space. Even
so, the approaches here can be applied to more
general space Hé) (Q), where 2 = p < oco. The
space Wol’2 (Q2) is of attention because we can
capture displacements that vanish on the bound-
ary 0Q of Q.

Let H1(Q) be the dual space, which is the
space of continuous linear functionals on H& (Q),
and the value of a functional b € H™1(Q) at a
point v € Hj(Q) is represented by (b,v). The
Sobolev norm || - || H (@) is of the form

1
2 2 2
120 = (120 gy + 19202 ) -

The dual norm to || - IIHé @ 18 Il g1 q)-
Let Q be a bounded, connected, open, Lips-

chitz domain of R,
/ gdx= 0} .
Q

The following problem is of our consideration:
Find ue H'(Q) and o € L}(Q) ([6]) such that

feHj(Q):{geHl(Q)

—div(o)=f inQ,
u/
o=——— ,
1-Bx)|u )
u=0 onoQp,
oc=G onodQr.

The considered model (2) is compatible with
the laws of thermodynamics [7, 8], that is, the
class of materials are elastic and non-dissipative.

For the later use, we consider u.(x) €

Wol’2 (©Q). Assume that u.(x) = u(f) is a peri-
€
odic function in x with period €. Equivalently,
u(y)=u (f) is a periodic function in y with pe-
€

riod 1. This implies that for any integer k,

Ue(X) = U (X +€) = U (x + kE),

11

correspondingly,

X X X
u(—) = u(—+1) = u(—+k1) =u(y+k).
€ € €

This observation assists the expressions of € in
(1). (Note that the spatial periodicity of the com-
posite leads to the same periodicity for u.)

For advantage, we assume perfect bonding
conditions at the interface 0Q2 between the layers,
that is, the displacement and traction are contin-
uous across each interface for all feasible defor-
mations:

on 0Q2,
on GQT.

(ue) 1) = (U2
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(e = (06 (10)

Assume that Q7 = @. In homogenization
theory, using (9), we rewrite the considered for-
mulation in the form of displacement problem:
Find u € H'(Q) such that

!
—div(—e): inQ, (11)
1— Be(x) |ul] /
ue=0 (u)a) = (ue)e) onoQ. (12)
Let
: U (13)
ae(X,Uy) = —————,
1 - fe(x) 1]

in which u.(x) € Wol’2 Q).

3. Existence and uniqueness

In [9], the existence and uniqueness of solu-
tion to (11)-(12) is proved and thanks to the fol-
lowing Lemma ([10, 11, 9]).

Lemma 3.1. Let

oo 1
z::{(eL (Q)‘0_|(|<M}. (14)
For any ¢ € Z, we consider the mapping
S
Z—F)i=——€R
seE P T o
Then, for each &1,¢, € Z, we get
PG - FE)] = ——— o1t (15)

(1= Be(x) (€11 + 1&E21)? ’
(F(1) = FE))(E1-E) = 1E1 - &l (16)

In our case of 1D, the solution u# can be
solved directly from (11)-(12).
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4. Multiscale finite element method (Ms-
FEM)

The goal of the MsFEM [12, 13] is to find a
numerical approximation of a homogenized so-
lution without solving auxiliary problems (for ex-
ample, periodic cell problems) that arise in ho-
mogenization. In our setting, we consider formu-
lation and analysis of the MSsFEM for (11)-(13),
in which u.(x) € Wol’2 (Q). Here, ac(x,u,) as in
(13) satisfies the assumptions (15) and (16). We
use € to denote the fine-scale problem and fine-
scale quantities.

Basis functions. Without loss of generality,
let K" be a usual partition of Q = [0,1] into fi-
nite elements (segments or blocks).

O=xp<x1 < <X <Xjp1<--<xny=1.

(17)
Each segment K; of the form [x;j_;,x;](i =
1,---N) in K" is of length 1/N. We call this par-
tition the coarse grid and assume that the coarse
grid can be resolved via a finer resolution called
the fine grid. Each coarse-grid block is a con-
nected union of fine-grid blocks. Let x; be the in-
terior nodes of the mesh K" and (,b(l.) be the nodal
basis of the standard finite element space

Wi =span{@):i=1,---N;K; € K"} c W* ().

(18)

Note that even though the choice of (/)(l.) can

be quite arbitrary, our main assumption is that
c[)(i) satisfies

(ae(x,(cp?)’))':o inkKie k", (19)

that is

/ ac(x, (7)) v' (0 dx =0 ¥v € HY (K; UKi).
; 0)

As usual, we require (/)?(xj) =0ij.

Note also that (/)(i) is clearly continuous on
Q. Moreover, although gb(l.) has discontinuities in
slope across element boundaries, it is smooth
enough that (,b(l.’ € H}(Q), so it leads to a conform-
ing approximation space (18).

For simplicity, ones can assume that W}, con-
sists of piecewise linear functions (although this

is not usually the case for the true solution u(x)):

= {vh € C%(Q): the restriction vy,

is linear for each segment (21)

K,-eK”,vh:OOnaQ}.

Multiscale mapping. Unlike the MSFEM for
linear problems, “basis” functions for nonlinear
problems need to be defined via nonlinear maps
that map coarse-scale functions into fine-scale
functions. We introduce the mapping EMSFEM .
Wy — Veh in the following way. For each vj, €
Wh, Ven = EMSFEMy, s defined as the solution
of the local problem

(ae (x, v;’h)), -0 inKiekK", (22
where v, j, = vj, on 0K;, that is, for every interior
node x; of Q. In each block K; = [x;_1,x;], (22)
can be solved, in fine grid, in general. Through-
out the paragraphs below, we can obtain an ex-
plicit expression for EMSFEM The map EMSFEM
is nonlinear, but, for a fixed vy on K; € K h, this
map is linear. In fact, one can represent v us-
ing multiscale basis functions as v, j, = gl vi(p;.}’”,

i=
where v; = vp(x;), x; being nodal points, and (/);./h
are multiscale basis functions defined by

(a€ (x, (gbl.”h)’))' -0 ink;ekh, (23)

(p;,’h = (p? on 0K; = {x;_1, xi}.

Consequently, linear multiscale basis functions
can be used to represent Ve p.

Multiscale numerical formulation. Our goal
is to find wu, € Wy (consequently, u.j(=
EMSFEMy, ) ¢ Veh) such that

<A€,h Up, Vh) = / fl)hdx, Vl/h € Wh ’ (24)
Q
where

(ae (x, u;h)), v,dx.

(25)

(Aeptin, vp) = )
KjekhJ K;



5. Analysis of multiscale finite element meth-
ods (MsFEM)

For the analysis of the MSFEM in our con-
text, we recall that

_ s
1 - Be(x)[<]

is a monotone function on ¢ € R. Here, a satis-

1
fies, with £ € R,0 = |{| = D < —— < 1, the fol-
B(x)

(26)

(le(x,f) =

lowing properties (as in Lemma 3.1):

lae(x,81) — ae(x,$2)| = CI§1 —&al, (27)
(e (x,E1) = @e(x,E2)) (E1 — &) = & — &%, (28)

where C is a positive constant defined in Lemma
3.1.

Recall that the inequalities (15) and (16) are
the general conditions that guarantee the exis-
tence of a solution and are used in homogeniza-
tion of nonlinear operator [14].

For the current periodic case, our goal is
to show the convergence of the MsFEM in the
limit as e/h — 0. We consider h = h(e) such that
h(€)>eand h(e) > 0ase— 0.

Note that the homogenization of nonlinear
partial differential equations has been studied
previously (see [14], for instance). It can be
shown that a sequence of solutions u, converges
(up to a subsequence) to u in an appropriate
norm, where u € Wol’p (Q) is a solution of the ho-
mogenized equation

—(a« (x, u')) = £.

Next, we will present the convergence results
for the MSFEM solutions in our context.

Theorem 5.1 ([13, 12]). Given a.(x,&) in the
form (26) as a periodic function with respect to
x. Let u be a solution of the homogenized equa-
tion (29) and uy, be a MsFEM solution given by
(24). Moreover, we assume that w, is uniformly
bounded in L**%(Q) for some a > 0. Then

(29)

1_1_1}3 ” Up— u” WOI'Z Q) =0, (30)

where h = h(e) >eand h—0ase— 0 (up toa
subsequence).
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Theorem 5.2 ([13, 12]). Let u be a solution of
the homogenized equation (29) and uy, be a Ms-
FEM solution given by (24), with the coefficient
ac(x,&) =a(x/e,é). Then

2 2
0

(3D

Proof. Based on the properties (27) and (28) of
ac(x,&), the proofs of both Theorems 5.1 and
5.2 can be derived from the proofs of the corre-
sponding theorems in [12, 13] in a similar man-
ner. Since our problem is in one-dimensional set-
ting, it follows that the boundaries of the coarse
element consist of isolated points. Hence, the
leading order resonance error proportional to €/ h
caused by the linear boundary conditions as well
as the second resonance error proportional to
(e/h)? due to mismatch between the mesh size
h and the small scale € of the problem are can-
celed. 0

6. Conclusions

In this paper, we investigate the analysis (in-
cluding convergence) of the multiscale finite el-
ement method (MsFEM) for a periodically non-
linear elasticity problem in one-dimensional and
strain-limiting settings. In particular, we ob-
tained the convergence results for the MsFEM
solutions in our context. An open question is ex-
tending this study to more general settings.
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